Traveling kinks in cubic nonlinear Ginzburg-Landau equations
نویسندگان
چکیده
منابع مشابه
Localized structures in coupled Ginzburg–Landau equations
Coupled Complex Ginzburg-Landau equations describe generic features of the dynamics of coupled fields when they are close to a Hopf bifurcation leading to nonlinear oscillations. We study numerically this set of equations and find, within a particular range of parameters, the presence of uniformly propagating localized objects behaving as coherent structures. Some of these localized objects are...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملLimiting Vorticities for the Ginzburg-landau Equations
We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the “London limit” of a Ginzburg-Landau parameter κ tending to ∞. We examine the asymptotic behavior of the “vorticity measures” associated to the v...
متن کاملDimension for Stochastic Ginzburg–Landau Equations
We consider a randomly forced Ginzburg–Landau equation on an unbounded domain. The forcing is smooth and homogeneous in space and white noise in time. We prove existence and smoothness of solutions, existence of an invariant measure for the corresponding Markov process and we define the spatial densities of topological entropy, of measure-theoretic entropy, and of upper box-counting dimension. ...
متن کاملNumerical Simulation of Ginzburg-Landau-Langevin Equations
This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as GinzburgLandau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.85.037102